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I. MOTIVATION / BACKGROUND

Today, many controllers for humanoid robots are manually
fine tuned and require special adjustments to each robot.
Adapting robots to different, fast changing environments and
providing a robust controller for all scenarios a robot might
face is challenging. Because the controllers are tuned to a
specific hardware setup, this makes it hard to fast iterate on
the hardware and change it.

This is different from animals and humans, which are
able to learn fined tune motions from sensor data. Motivated
by this, we are interested to see if current reinforcement
learning techniques can be used to learn dynamic locomotion
directly from data. We are also interested in understanding
the inter-play between learning and the mechanical system.
For instance, are there mechanical system on which learning
is easier? Is there a leg design that can speed up learning?

To help us answer these questions, we build a 3D printed,
torque controlled robot leg specially suited for running learn-
ing algorithms: The robot is easy to repair and can run for
hours without manual reset. For the learning, we build on
the Guided Policy Search (GPS) algorithm [1], which has
been very successful at learning manipulation tasks for real
robots recently. It was also shown that simulated locomotion
could also be learned [2]. The algorithm has several interesting
features including sample efficiency, it uses a combination of
optimal control with learned local dynamic models, and it can
generalize from local policies by using deep neural networks.

To our knowledge, the GPS framework has never been
applied on real legged robots for locomotion tasks. In our
work, we use the GPS framework to learn a hopping motion
for a legged robot. In this simple setup, we aim to see if the
algorithm can deal with contact rich hybrid dynamics. We are
also interested to experimentally study the influence of sensory
feedback (e.g. force sensing) and the mechanical leg design
on the learning algorithm.

II. EXPERIMENTS & HARDWARE
In the following we present a brief overview on the GPS
algorithm, what experiments we applied it to, and the real
robot hardware we use to run experiments at the moment.

A. GPS Algorithm

The GPS framework optimizes a set of local, task specific
policies and uses them to learn a neural network policy.
In our case, we optimize local policies for different initial

Fig. 1. 3D printed, 1D hopper robot.

configurations of our robot (height above the ground, leg
position). The neural network policy learns not only to solve
the tasks of the local policies but also how to solve new unseen
tasks.

To optimize the local policies, the GPS framework learns a
local, linear model of the system dynamics along the policy’s
trajectory. For this, perturbed rollouts along the nominal policy
trajectories are recorded and the local dynamics model param-
eters are fitted to the rollouts. A learned prior model helps to
reduce the number of rollouts to get a good dynamics model.
Once the local dynamics model is fitted, the local policies
are optimized using iLQR with respect to a cost function.
Eventually, the neural network policy is trained using the
information from the local policies.



Fig. 2. Rollout of the neural network policy on the simulated hopper. The plot shows snapshots of the hopper over a 2 second trajectory.

The GPS framework modifies the optimization objective of
the local policies and neural network policies such that they
stay close to each other during optimization. This makes the
local and neural network policy converge to the same behavior
at the end of the optimization.

B. Experiments

To see if the GPS framework can learn policies for contact-
rich locomotion tasks, we aim to learn a hopping motion on
robot with a single leg. The base of the robot is restricted to
move along the verticle axis with fixed rotation axis. The robot
has a torque controlled revolute joint for the hip and another
one for the knee. In this abstract we present the results from
simulation. We are currently testing the algorithm on a real
robot. For the simulation, we model the forces acting on the
robot using momentum preservation to get a realistic contact
behavior.

Our learning procedure is as follows: we use two local
policies. In the first policy the robot starts in a configuration
high above the ground and in the second one the robot is
closer to the ground. We use two cost functions to describe
the hopping motion. One describes how to extend the leg of
the robot when it is in contact with the ground and the other
cost function describes the desired leg position for landing on
the ground again. We begin the learning process by learning
the system dynamics and optimizing the local policies. After
five optimization iterations, we also start learning the neural
network policy.

At the end of the optimization, the neural network policy is
capable to reproduce the hopping trajectories from the local
policies. The results are shown in Figure 2. In addition, we
also analyze its stability with respect to noise applied to output
torques.

In summary, we managed to learn a hopping motion using
the GPS framework. This is remarkable, given the switching,
contact rich, and non-linear system dynamics.

C. Real Robot Hardware

We are now applying the same GPS learning framework
on a real robot hardware. To support learning on a real robot
hardware, we designed our custom 3D printed robot leg using

cheap and easy to repair hardware components. Having this
testbed is important as policies learned using reinforcement
learning are often unstable and have aggressive exploration
techniques with the potential to damage the robot. As rein-
forcement learning algorithms often need many rollouts, the
hardware is designed to reset itself and run for hours without
manual interaction.

To achieve this, we build the robot leg as shown in Figure 1.
We restrict the motion along the vertical axis using a slider.
The leg is equipped with two torque controlled brush-less
motors - one for the hip and one for the knee joint. The
last end-effector is equipped with a three axis force sensor
to detect contact with the ground. In addition, we measure the
hip-height above the ground, and the joint angles as well as
joint velocities.

III. FUTURE WORK

Using the GPS framework, we managed to learn a hopping
motion in simulation. As next step, we started to apply the
same framework on real hardware. More concrete, we want
to investigate as future work how sensor feedback influences
the learning, test the learning algorithm on different leg
designs (e.g. legs with series elastic actuation), and apply the
framework to a quadruped robot.
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